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Abstract-According to experiments, the bending behaviour of a pipe is characterized by its
global elastic-plastic(hardening-softening) bending moment--eurvature constitutive equation which
depends on the interaction between its material properties and the ovalization of the cross-section
when it is subjected to large plastic deformation, In the context of dynamic structural plasticity, this
behaviour should have an important role in problems such as pipe-whip, This paper presents the
results of a study of the dynamic response of a tubular cantilever beam which possesses such
hardening-softening behaviour in the plastic range, With the help of a numerical approach based
on a small deflection formulation, three examples are given. The first example which utilizes
parameters selected from a typical pipe-whip test is compared with experimental data and gives a
good prediction of the degree of ovalization of the cross-section, the distribution of plastic work in
the pipe and the instantaneous deformation of the pipe. Additional examples consider various pulse
loadings and constitutive relations to demonstrate that the evolution of softening can undergo three
stages, viz. initial softening of one cross-section, growth of the softening region and finally shrinking
of the softening region to a particular cross-section which exhibits a sharp localization of the bending
deformation.
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diameter of a tubular beam
Young's modulus
positive functions
second moment of area of the tubular cross-section about the neutral axis
rotary inertia of a cross-section per unit length of the tubular beam
length of the tubular beam
bending moment
maximum elastic bending moment
fully plastic bending moment
mass per unit length of a tubular beam
concentrated force pulse
distributed load along a tubular beam
shear force
time
transverse displacement
coordinates
curvature
critical curva ture
curvature at the instant unloading occurs
elastic limit curvature
reversed yielding curvature
coefficient defined in Example 3
o( )Ie(t)
increment

I. INTRODCCTION

The authors and their co-workers have, over the past 5 years, completed a systematic
experimental and theoretical programme of research on the dynamic plastic behaviour of
tubular beams in relation to the problem of pipe-whip (Reid and Prinja, 1989; Wang,
1991), This work has demonstrated that a relatively simple rigid, perfectly-plastic beam
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model gives reasonable agreement with experimental observations of the response of a pipe
to the blow-down force produced when pipe rupture is simulated (Wang, 1991).

The discrepancies between the theoretical predictions and experimental observations
were mainly attributed to the effects of hardening and softening in the plastically deformed
tubular beams. However in reality, the plastic behaviour of tubular beams is significantly
different from that of a beam with a solid section. Hardening and softening resulting from
the influence of the material properties and the ovalization of the beam cross-sections
greatly affect the dynamic plastic behaviour of tubular beams. In particular the rigid-plastic
approach or even a conventional elastic-plastic analysis is unable to represent the local
deformation of a tubular beam under intense dynamic loading. In order to study the effects
of hardening/softening on the dynamic response of pipes under pulse or impulsive loading,
a new study, the preliminary results of which are given herein, has been made of the problem
based upon a more general constitutive model for the beam (pipe).

The behaviour of a pipe under a quasi-static bending moment, has received a lot of
attention since the initial work of Brazier (1926) who studied the ovalization of a pipe
under pure bending in the elastic range. Several studies [e.g. Reddy (1979) ; Kyriakides and
Ju (1992)] have extended this work into the plastic regime for quasi-static loading but the
dynamic plastic behaviour of a tubular beam with such hardening/softening properties
under intense dynamic loading has not been studied extensively. There are a few publications
[e.g. Jones and Wierzbicki (1987); Stronge and Yu (1989); Martin (1989)] which do
explore failure mechanisms in relation to pipe-whip problems and other structures in which
softening effects occur, such as those resulting from material damage mechanisms, e.g.
micro-cracks. The dynamic response of a strain-softening (or hardening) cantilever beam
subjected to impulsive loading was considered by Stronge and Yu (1989) who assumed that
the cantilever possesses a rigid, plastic, linear-softening (or hardening) moment-curvature
characteristic. However they ignored the inertia forces in the plasticallY deforming segment
in the initiaL transient stage of the deformation. It was made clear by Stronge and Yu
(1989) that this model does not give a realistic representation of the transient stage of
deformation of either a strain-hardening or strain-softening cantilever because it neglects
elastic effects. Nevertheless, the study is of interest here because it again demonstrates that
elastic effects can significantly influence the dynamic plastic behaviour of a structure,
especially, when the aim is to predict local deformation and study failure criteria under
intense dynamic loading. This issue was examined carefully for solid section cantilever
beams by Reid and Gui (1987) who demonstrated the significant role of elasticity in the
final distribution of plastic deformation in an elastic, perfectly-plastic beam of solid cross­
section.

In connection with failure criteria, Jones and Wierzbicki (1987) discussed some forms
of local failure of thin-walled beams, and suggested that the failure mode could be rep­
resented by a softening moment-rotation characteristic for the beam as shown in Fig. 1
but no detailed analysis was given. The work of Martin (1989), who examined the failure
mode of a cantilever beam subjected to impact may be regarded as an extension of the
discussion given by Jones and Wierzbicki (1987). He used a rectangular shape for the
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Fig. I Typical moment-rotation characteristics: (a) elastic-brittle beam or elastically buckled long
cylinder; (b) plastically deforming thicker tube; (c) simple rigid-softening computational model.
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Fig. 2. (a) Elastic, plastic tubular cantilever beam; (b) beam element in deformed configuration.

relationship between the moment and angle of rotation at a plastic hinge to describe the
softening behaviour of the beam. His theory is also based on the assumption of rigid, plastic
material behaviour. The softening region was found not to expand and the localized
deformation took place at a single plastic hinge in the beam.

The aim of this study is to analyse the dynamic behaviour of an elastic, plastic tubular
cantilever beam subjected to pulse-loading. In the plastic range, the tubular beam displays
hardening and softening behaviour, i.e. its moment-eurvature characteristic has a mon­
otonically increasing portion followed by a monotonically decreasing portion in which the
effects of ovalization dominate over the material hardening effects. Numerical solutions
based on a small deflection formulation with parameters selected from a previously per­
formed pipe-whip test are given and compared with the experimental data for the initial
stages of the deformation. Further features of the influence of hardening and softening
characteristics are illustrated by means of two further examples.

2. ANALYSIS

2.1. Equations ofmotion
Figure 2(a) shows a tubular cantilever beam of length L carrying an end mass and

loaded by a force pulse at its tip. Its behaviour is characterized by its global elastic,
plastic (hardening/softening) properties due to the strain-hardening of the material and the
ovalization of the tubular cross-section when it is subjected to a bending moment, as
indicated in Fig. 3. Suppose that the diameter D of the tubular beam is much smaller than
its length L, so that the effects of shear can be neglected. However, the rotary inertia of the
tubular cross-section will be taken into account in order to model more precisely the
propagation of the elastic flexural deformation.

A typical deformed element of the tubular beam is as shown in Fig. 2(b), the x and y
axes being in the axial and transverse directions of the beam, respectively. The external
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Fig. 3. Constitutive relation for a tubular beam



3410 S. R. Reid et al.

force acting on the element, p(x, t), is in the transverse direction only and the deflection is
assumed to remain small. Thus the internal generalized forces acting on the element are the
shear force Q and the bending moment M. The equations of motion of the element are

~: + m~v = p(x, t)

aM ow
~-Q=J-aX ax'

(1)

(2)

where w is the deflection in the y direction and, m and J are the mass and rotary inertia per
unit length of the beam. Eliminating the shear force, Q, between these equations leads to

(3)

Equation (3) is applicable to beams made of arbitrary material.

2.2. Constitutive relations
The general constitutive relation between the bending moment and curvature for a

typical tubular beam which possesses elastic and hardening and softening plastic behaviour
can be written in the form (see Fig. 3) :

O:':S; K:':S; Ke

Ke < K :':S; Kcr ; ~K ;::: 0

K er < K; ~K ;::: 0,

(4a)

where K = 02 W / OX2 for cases of small deflections. K e and Kcr are respectively the elastic limit
curvature and the critical curvature at which the transition from a hardening state into a
softening state occurs. Ie(K), fh(K) and j,(I() are positive functions which describe the
characteristics of the deformed tube in the elastic phase, the hardening plastic phase and
the softening plastic phase, respectively, and ~K is the increment in curvature over a time
interval M.

Equation (4a) is valid only for loading states (~K > 0) in the plastic range. If ~K < 0
after K > Ke, elastic unloading or reversed yielding will take place, the M-K relation follows
the curve ABC as shown in Fig. 3 which is based on the assumption that the tubular beam
has isotropic behaviour, thus, for ~K < 0

2Md
Kd- £1 < K < Kd

2Md
Kd < Kef; K < Kd - £1 (4b)

where K d and M d are the curvature and bending moment, respectively, of the cross-section
at the instant when unloading starts and Kg is the reversed yielding curvature which is given
by



Response of a tubular cantilever beam 3411

(4c)

Generally speaking several loading and unloading cycles may occur at some cross­
sections during the dynamic response of the beam. For this situation, similar steps to those
described above are followed.

The derivation of the relationship between M and K for a beam with elastic-hardening/
softening plastic behaviour is in itself an interesting topic. However this is beyond the scope
of the present paper which employs the results described in a recent paper by Yu et al.
(1993).

2.3. Governing equations and discretation
The equation of motion, eqn (3) together with the constitutive equations (4) constitute

a closed set of non-linear partial differential equations with floating boundaries between
the various regions, e.g. between the elastic and hardening regions, the hardening and
softening regions, and the plastic and unloading regions. It is difficult if not impossible to
obtain an analytical solution for this floating boundary value problem in a finite beam.
However, the equations can be solved by numerical means, which are capable of predicting
the dynamic response of the tubular beam in the early, transient stages. The details of the
final shape of the beam in practically important problems (e.g. pipe-whip) require a large
deformation analysis which is currently being completed but the present theory brings out
the important phenomenon of localization of deformation which stems from the softening
characteristics.

Equations (3) and (4) can be rewritten in finite-difference form. If the beam is divided
into elements of length llx;, then the governing equations for an element at the ith position
are

where

K i :( K e

Ke < K, :( Kef; llK; ~ 0

Kef < Kj ; llK i ~ 0

(6a)

during loading, or, for llK i < 0

(6b)

during unloading and reversed yielding, and

wj + I -2w i +w'_1
1{, =

(7)

Solving these equations gives the instantaneous values of accelerations w; at any instant
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tj , thus for the next instant t,+1 = tj+M, the displacements Wj,j+J[= w/tj+ I )] in the finite
difference notation is deduced from

W"j+ I = w',j(dt)2 + 2w',j - W"j_I' (8)

Accordingly, at the instant t,+ I, the curvature K'.j+ 1[= K,(tj + I)] at the ith position is cal­
culated from eqn (7), and M j.j+ 1[= M,(tj+ \)] is then calculated by making use of eqn (6).

2,4. Computational procedure
The computational procedure can be summarized as comprising the following steps

when the quantities W"j and M',j are known for all the points in the tubular beam at time tj ,
(i) Solve the linear algebraic equations (5) to calculate the acceleration W"j at instant tj . (ii)
Using eqn (8), calculate the displacement W"j+ I at the instant tj + I = tj + dt, where dt is the
time increment. (iii) Using eqns (7) and (6) calculate K"j+ I and M',j+ I> the values of K, and
M j at the instant t}+ I' This cycle of computations continues, step by step, until all of the
quantities in the response process at any time have been obtained.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Pipe-whip analysis
All of the parameters selected in this example are based on an actual pipe-whip test,

Test 4 (Wang, 1991). The cantilever tubular beam was made of mild steel and had outer
diameter D = 50.8 mm, wall-thickness h = 2.6 mm and length L = 3 m. It had a con­
centrated mass G (a 900 elbow and flanged pressure-release device) at its tip. No external
load was applied to the beam except for a concentrated force pulse applied at the tip, which,
according to the actual pressure pulse measurements, was as shown in Fig. 4 and can be
expressed approximately by

P(t)=

11.25 - 1171.88t

6.56

6.56 + 937,5(t-0.017)

11,25 - 192.3(t - 0.022)

8.75-15,63(t-0.035)

0< t ~ 0.004

0.004 < t ~ 0.017

0.017 < t ~ 0,022

0.022 < t ~ 0.035

0,035 < t,

(9)

where the units for P and tare kilonewtons (kN) and seconds (s), respectively.
The derivation ofthe constitutive relations (M-K) of the tubular beam for the hardening

and softening phases used in this example is given by Reid et af. (1992). It is based on the
analysis of ovalization given by Calladine (1982). An initial elastic phase is followed by a
hardening portion which is represented by a polynomial in K. This ensures continuity of
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Fig, 4. Shape of pulse load from actual measurements.
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Table I. Data for pipe-whip Test 4

Mass per unit length of the pi pc
Concentrated tip mass
Second moment of area of the cross-section about the neutral axis
Polar moment of inertia of pipe cross section per unit length of the pipe
Young's modulus
Maximum elastic bending moment
Fully plastic bending moment
Maximum elastic curvature
Critical curvature
Length of each element (Number of elements = 60)

m = 3.22 kg/m
G = 1.80 kg
1= 13.378 X 10- 8 m4

J = 1.0387 x 10] kg/m
E= 200 GN/m2

M, = 1050 Nm
Mil = 1750 Nm
K, = 0.03924 m - I

K" = 1.54 m- I

~x = 50mm

slope in the M-h: relations at the transition from elastic behaviour and incorporates the
critical moment and curvature corresponding to the onset of softening given by Calladine.

(I) Elastic phase

A-1(,,:) = Eh for 0:::; h: :::; K e

(2) Hardening plastic phase

A/( h:) = 1050+920 h: - 300h: 2 for Ke < h: :::; Ker

(3) Softening plastic phase

M(h:) = 1900(1.0-0.031h:2
) for h:cr < K.

Other parameters used in the example are given in Table I.
Figure 5 shows the distribution of curvature along the tubular cantilever beam at

various instants during the response. The softening phase is initiated at t::::-: 32 ms and at
the position approximately 0.85 m from the tip of the beam. The experimental data (see
Fig. 6) indicate that the 1110st ovalized cross-section is at approximately 0.762 m away from
the tip. The difference hetween numerical prediction and experimental measurement is
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Fig. The distribution of curvature.
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Fig. 6. Variation of the largest and smallest diameters of the deformed pipe along pipe length,
measured from a pipe-whip specimen of2 inch diameter, loaded to 1000 psi (Test 4). x was measured

from the pipe tip.

about 10%. It is also evident from Figs. 5 and 6 that the numerical results provide good
estimates for the axial distribution of plastic deformation measured after the tests. In this
example, when the cross-section which has the maximum curvature in the hardening phase
reaches the critical curvature Ken the succeeding softening character is restricted to that
cross-section only and its curvature increases sharply while the neighbouring sections
undergo unloading.

Instantaneous profiles of the centre line of the deformed tubular beam obtained by
numerical calculation are as shown Fig. 7. As a comparison, some experimental data
obtained from a series of high speed photographs which were taken in Test 4 are also shown
in Fig. 7. The profiles agree reasonably well with each other, given the limitations of the
small deflection approximation.

Tip deflection, one of the important parameters in the study of pipe-whip, is plotted
against time in Fig. 8 where both numerical results and experimental data are included.
Again, good agreement is noted.

The instantaneous distributions of bending moment along the deformed tubular beam
are plotted in Fig. 9. They confirm the point of view expressed by Symonds and Fleming
(1984), and Reid and Gui (1987) that the moment distributions in an elastic-plastic beam

•
0.0 0

0 •
w(m) 0 •20 0

• ~~Numerical calculation0
0.5 • Experimental data (t=10 ms)0 'V

• 0 Experimental data (t=20 ms)
30 ms •

1.0 • Experimental data (t=30 ms)

•
•

1.5
0.0
tip

0.5 1.0
x(m)

1.5 2.0 2.5 3.0
root

Fig. 7. Deflected shapes of the pipe at various instants.
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Fig. 8. Tip deflection of the pipe.

differ markedly from those predicted by a rigid-plastic beam analysis in some stages of the
deformation. In particular the occurrence of a negative plastic bending moment at the root
and the oscillation of the position of the peak moment around the middle part of the beam
are both features of the present analysis as they were of the analysis given by Reid and Gui
(1987). In the Appendix the present analysis is applied specifically to one of the problems
solved by Reid and Gui and close agreement between the two approaches is demonstrated.

3.2. Rectangular pulse loading
All of the parameters selected in this example are identical to those in Section 3.1 with

the exception that shape of the force pulse applied to the tip is taken to be a step force P
with magnitude

p = [s(ms) P(t) dt/35(ms) = 8442 (N),

where P(t) is defined in eqn (9). The distributions of curvature and bending moment along

• t=l ms
" t=5 ms
.. t=10 ms
o t=20 ms
• t=30 ms
'" t=35 ms

0.5 '.0 15 2.0 25 3.0
x (m) root

Fig. 9. The distribution of bending moment.
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the tubular cantilever beam at various instants are shown in Figs 10 and II, respectively.
A notable difference between this case and that described in Section 3.1 is that, in the
softening phase, the softening region expands when a rectangular pulse is applied. A
neighbouring cross-section which is 50 mm away from the initial softening cross-section
enters the softening state. The softening region then shrinks to a single cross-section while
the neighbouring cross-sections undergo unloading. This phenomenon is shown in Fig. 12
which give a summary of the evolution of the plastic regions during the response.

The tip deflection against time for Example 2 is plotted in Fig. 8, which actually gives
a closer fit to the experimental data than that given by Example I.

3.3. Examples of the development ofa softening region
In the previous two sections examples have been given in which the constitutive

equation was selected from Reid et al. (1992) based on experimental observations. Accord­
ing to these calculations, it seems that the softening region undergoes virtually no growth,
the curvature K( > Kcr) at any time being confined to only one or two cross-sections in the
tubular beam. At first this is something of a puzzle when comparing this phenomenon with
the results obtained by Yu and Li (1993) and Wang et al. (1994) in which the softening
region develops with time for semi-infinite beams subjected to a constant velocity at the
tip. It should be noted, however, that in the present study the beam is finite and clamped
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Fig. II. The distribution of bending moment.



Response of a tubular cantilever beam 3417

40

35

30.. 25

5
Q) 20
S
e:: 15

10

5

v hardening region
... softening region

o unloading relion

reversed

bending moment

0L---'----'---L..----J_-'---...L-----L.-.l._L-..L--'------'

o 5 10 15 20 25 30 35 40 45 50 55 60
tip Element code

Fig. 12. The evolution of plastic regions for Example 2.

at one end, so that the elastic flexural waves reflected at the clamped end greatly influence
the distribution of bending moment. When the maximum curvature reaches the critical
value Ken the bending moment distribution has reached a steady state. Consequently, the
softening region concentrates at the cross-section where the bending moment is a maximum.

In order to reveal whether or not the softening region can grow, two other constitutive
models are selected in this section in which the critical curvature Kef is set much smaller
than 1.54 m -I in order to initiate the softening phase before a steady state of moment
distribution has been attained.

The loading constitutive equations for the two models are:
Model A

with Kef = 0.5 m- I
, K e = 0.03924 m- I

, rt. = 0.01 ;
Model B

{

ElK

M = 1050 + 733.~(K - Ke ),

1755[1-rt.(K-Kef )], Kef < K,

with Kef = 1.0 m- I
, Ke = 0.03924 m- I

, rt. = 0.01.
The external force applied at the tip is a linearly decaying pulse with a mean magnitude

identical to that in the previous two examples. It is expressed by

P(t) = 16.884-482.400t,

with Pin kilonewtons (kN) and t in seconds (s).
The positions of the softening regions in the tubular beam during the response of the

two models are as shown in Figs. 13(a) and 13(b), respectively. Unlike the first example
described in Section 3.1, the softening region extends towards the root after the softening
phase is initiated at one cross-section. The length of the softening region reaches 0.4 m
(;;:;oO.13L) as shown in Fig. 13. The time interval from the initiation of softening to final
localization, at which the expanded softening region shrinks to a single cross-section, is
approximately 5.6 ms for Model A and 10 ms for Model B.
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Fig. 13. (a) Evolulion of plastic regions for Example 3, model A; (b) evolution of plastic regions
for Example 3. model B.

The cross-section with maximum curvature in the softening region is not always
restricted to the initial softening section but possibly changes its position. This is confirmed
by Fig. 13. Therefore, which section becomes the final localized softening position depends
upon whether or not its curvature is the maximum of those for all of the softening sections
when unloading occurs in the beam.

4. CONCLUDING REMARKS

The elastic-plastic dynamic response of a tubular cantilever beam which possesses
hardening and softening characteristics has been studied by a numerical procedure based
on a small deflection formulation. The effects of strain-hardening of the material and the
ovalization of tubular cross-sections have been incorporated into a plastic hard­
ening/softening relation between the bending moment and the centre line curvature. The
rotary inertia of beams elements has also been included so as to attain a better simulation
of the propagation of elastic flexural waves.

Numerical examples demonstrate that this finite difference procedure provides pre­
dictions of distributions of bending moment and plastic curvature in excellent agreement
with those obtained from finite element analysis (Reid and Gui, 1987). Another example
which utilizes parameters selected from a pipe-whip test (Wang, 1991) when compared with
experiment data gives good predictions for the region influenced by ovalization and for the
deflected shape of the pipe. All of these verify that the theoretical model and the numerical
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procedure are appropriate for analysing the dynamic behaviour of flexible tubular beams
subjected to intense pulse!impulsive loading.

One notable feature observed from the numerical results is that softening may be
confined to a single cross-section, or it may extend over a region of finite length away from
the loading point. As indicated by the third example, whether the softening region extends
or not depends on the magnitude and the shape of the loading pulse, as well as on the
detailed character of the hardening/softening M-K curve. This conclusion is contrary to
that for the static case, for which Wood (1968) showed that softening cannot occur in a
region of finite length. This is because in the dynamic case the inertia of the beam results
in bending moment diagrams continually changing with time. This allows the bending
moment generated at some cross-sections to increase and reduce, resulting in hardening
and softening. On the other hand, the development of a softening region in a finite beam is
restricted, unlike that in a semi-infinite beam (Yu and Li, 1993; Wang et al. 1994) in which
the softening region can continuously extend with increase of time. The limited length of
the softening region in finite beams is attributed to the unloading in the plastic region
caused by the reflected elastic flexural waves, as explored by Reid and Gui (1987) as well
as by the numerical examples in the present paper.

The numerical results obtained in the present study are also substantially different
from those given previously by Stronge and Yu (1989). By adopting a rigid-hardening (or
softening) M ~ K relation and neglecting the inertia of the plastically deforming segment
close to the root, Stronge and Yu (1989) found that for a rigid-hardening (or softening)
cantilever beam subjected to impact loading at the tip, the final curvature increases from
the tip towards the root. The present model provides an entirely different picture of the
location of the softening region and the final distribution of plastic curvature. This is
because in the present model we have correctly incorporated the effects of elasticity and
inertia in the entire beam. As pointed out by Yu (1993) and by Reid and Gui (1987), in
comparison with rigid-plastic analyses, taking elasticity into account dramatically alters
the shape of the bending moment diagram for a cantilever beam subjected to impact, so
that the peak moment appears at an inner cross-section, where softening may be initiated,
instead of at the root.

The major limitation of the present model is the assumption of small deflections. This
will be removed in a future study, so that the effects of geometry change and axial forces
can be investigated. Furthermore, the possible formation of a localized buckle (kink) in the
tubular beam will be of particular interest.
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APPENDIX

In order to examine the effectiveness of the computer program used in the present study of the dynamic plastic
behaviour of tubular beams with global hardening-softening properties, this appendix reproduces some results
obtained by Reid and Gui (1987) who used the finite element code ABAQUS. All of the parameters selected here
for the sample problem [Example I in Reid and Gui (1987)] are the same as those in Reid and Gui (1987) (see
Table A). It should be noted that the formulation presented in this study is based on small deflection theory and
ignores the transverse shear effect, which was taken into account in Reid and Gui's paper but was limited to elastic
deformation only.

Figs AI-A4 give the distributions of bending moment over the time interval from t = 0.065 ms to I = 3.590
ms. The curves are very close to Fig. 3(a,b,c,d) in Reid and Gui's paper and verify that the key features resulting
from the inclusion of elasticity in the finite element approach are retained by the present numerical procedure.

Table A

Parameters
Example I
R = 14.8 Parameters

Example I
R = 14.8

E(N mm- 2)

lTo (N mm- 2)

Mo(Nm)
p (kg m- 3

)

L (mm)
b (mm)
h (mm)

2.069 X 105

200
16.5

7850
355.6

16.3
4.5

G (kg)
Va (m S-I)

f3 = pLbh/2G
Ko (1)
R = 2K"EI/M~L
No. of elements

0.336
12.9
0.305

27.9
14.8
28
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Fig. AI. Bending moment diagram at various instants, showing flexural wave motion (from 0.065
to 0.506 ms).
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Fig, A2. Bending moment diagram at various instants, showing flexural wave motion (from 0,638
to 1A28 ms),
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Fig. A3. Bending moment diagram at various instants, showing flexural wave motion (from 1.520
to 2.155 ms).
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Fig. A4. Bending moment diagram at various instants, showing flexural wave motion (from 2.258
to 3.590 ms).


